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Dissipative Fluid in Conformally Flat Space-Time 
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We consider a conformally fiat, inhomogeneous solution of the Einstein equations 
for a dissipative fluid. The production of entropy is found to depend on some 
arbitrary functions of time. By some subsidiary conditions, such a model is shown 
to evolve into a homogeneous Friedmann-type universe. 

1. I NTR ODUC TION 

The perect-fluid cosmology with spatially homogeneous isotropic uni- 
verse governed by Einstein's equations represents fairly well the large-scale 
structure of the present-day universe. Looking back in time, one finds that 
such a universe must have a singular origin of infinite density of  matter. 
Apart from the singular origin, one encounters a series of  problems such as 
the particle horizon, the formation of galaxies, and a high photon-baryon 
ratio. To circumvent these problems in the classical context one looks for 
some physical process that can account for these problems reasonably well. 
It is natural to consider then a deviation from the perfect-fluid content of the 
universe. At the very early universe, one might expect that pressure, density, 
or velocity would vary over distances of the order of  a mean free path or 
over times of the order of a mean free time or both (Weinberg, 1971). In 
such a case dissipative effects might play an important role in the evolution 
of  the universe. 

Perfect fluids with bulk viscosity have been studied (e.g., Weinberg, 
1971; Murphy, 1973; Nightingale, 1973; and references therein). In a short 
communication, Som and Santos (1980) investigated the role of  dissipation 
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of the fluid kinetic energy as heat flow. A spatially homogeneous space-time 
does not admit heat flow. The spatially homogeneous Robertson-Walker 
space-time which is conformally flat allows dissipative processes related to 
bulk viscosity. However, the bulk viscosity contributes negligibly to the 
production of entropy when the pressure and thermal energy are dominated 
by radiation. If one maintains conformal flatness of space-time, the only 
alternative remaining to study the effect of other dissipative processes is the 
inhomogeneous, conformaUy flat space-time. Any conformally fiat, inhomo- 
geneous space-time where the entropy production might take place through 
heat flow might be a good candidate if it tends asymptotically to the Robert- 
son-Walker space-time. 

In this paper, we investigate the role of dissipative processes in a new 
conformally fiat, inhomogeneous space-time. As the shear and vorticity vanish 
identically in such a space-time, dissipative processes are mediated by means 
of the bulk viscosity and heat flow only. 

2. THE GENERAL EQUATIONS OF MOTION 

The energy momentum tensor of a fluid with bulk viscosity and heat 
flow is given by (Greek and Roman indices run from 0 to 3 and from 1 to 
3, respectively) 

To." = puo.u" + ( p  + x)ho." + q~u" + q ' u  ~ (2.1) 

In this expression u ~ is the four-velocity of the particles in a fluid of energy 
density p and pressure p. The tensor ho." is a projection tensor defined as 

ho.~, = gO.,, + uo.u" (2.2) 

The fields ~" and qo. describe the out-of-equilibrium properties of the fluid. 
The field q~' satisfies the constraint 

u~'q,~ = 0 (2.3) 

The conservation of energy-momentum in such a field is given by 

To.'~ = 0 (2.4) 

where the semicolon denotes covariant derivative. 
Treating the number density of particles in the fluid n as a fundamental 

thermodynamic variable along with p, we have for the conservation of particle 
current No. 

N~;o. = (nuo.);o. = 0 (2.5) 

The entropy per particle s is specified by the equation of state 

s = s(p, n) (2.6) 
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The temperature and pressure are obtained from the second law of 
thermodynamics, 

T d s  = 1 [ P + P (2.7) 

1 n{OSl (2.8) 

p = - p  - n2T(  Os] (2.9) 

Since the system is out of equilibrium, one must have S'~;~ -> 0 from 
the second law of the thermodynamics, where S ~ is the entropy current. 

The standard theory of Eckart (1940) uses the following expression for 
the entropy current 

q,~ 
S"  = snu '~ + ~ (2.10) 

T 

Such a formulation is inadequate for many phenomena involving steep 
space-time gradients of  heat flux and viscous stress. However, under quasi- 
stationary conditions, i.e., when these fields vary slowly on space-time scales 
characterized by the mean free path and mean free time, the formulation of 
Eckart is correct up to the first order in deviations from equilibrium. 

Under quasistationary conditions, one obtains, using (2.4) and (2.5), 

TS'~;~, = -[a'u~;,~ + q'~(T-IT,~ + u~u,~;~)] (2.11) 

where the colon denotes ordinary partial derivative. 
The second law of thermodynamics S '~;,~ --> 0 then requires that 

"r = -~u'~,,~ = -C0 (2.12) 

q~ = -• + Tu~uf~,v) (2.13) 

where 0 = u'~;~, is the expansion scalar, and ~ > 0 and X > 0 are the 
phenomenological coefficients of the bulk viscosity and the thermal conduc- 
tivity respectively, characteristics of  the material medium. With these expres- 
sions one then obtains the divergence of the entropy current as positive 
definite, 

;, = ~ ~0 2 + q~q~ (2.14) 

Equations (2.12) and (2.13) along with (2.4) and (2.5) form a complete 
system of equations for the dynamical variables (p, n, % u '~, and q~). 
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3. A NEW CONFORMALLY FLAT SOLUTION OF THE 
EINSTEIN EQUATIONS FOR A FLUID W I T H  BULK VISCOSITY 
AND HEAT F L O W  

In this section we shall obtain a new exact solution of Einstein's equations 

1 
G ~  = R ~  - -~ g ~ R  = KTr (3.1) 

in the form 

g~,, = eE~r'ql~v, 'qO~v = diag(-1 ,  1, 1, 1), cr = cr(x ~) (3.2) 

where T~ corresponds to (2.1). 
With 

u ~ --- e - ' ~  (3.3) 

one gets from (2.12) and (3.2) 

0 = -3[e-'~],o (3.4) 

The Einstein equations (3.1) can be written down explicitly (Eisnenhart, 
1926) with the help of (2.1) and (3.2)-(3.4). The result is 

2 Ki3e2O. Goo = ~ 0,oe" + Antr + 2A2or = (3.5) 

2 
Goj = -~ O j e  '~ = - -Kq je  '~ (3.6) 

Gij = 2crij -- 80(Al~r + 2A2tr) = Ke2"Si j (p  + 'r) (3.7) 

where 

try, = cr,~, - cr~cr, (3.8) 

Altr = "q~'~tr,~tr,v (3.9) 

A2tr = "q~Otr,~, (3.10) 

Adding up equations (3.5) and (3.7) for i = j,  we have after some 
rearrangements 

1 K 
(e -~) , l l  = -~ 0,o - -~ ( e - '~ ) (p  + "r + p) (3.11) 

This set of equations allow us to write 

(e-~r),lt = (e-cr),2z = (e-~),33 (3.12) 
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Thus (e-") must assume the general form 

1 
e - "  = ~ hSijx'x s + cLix ~ + [3 (3.13) 

where h, or, and [3 are arbitrary functions of x ~ = t. 
From (3.7), for i ~ j ,  we get 

(e-Ct),ij = 0 (3.14) 

which is consistent with (3.13). 
The expansion scalar is given by 

0 = -3[ �89  j + 6tjx j + 1~] (3.15) 

where the dot represents derivative with respect to x ~ 
The heat flow q,  relative to u~ can be obtained from (3.6) and (3.15), 

resulting in 

Kqi = 8 i j (~X j + (x j )  (3.16) 

The total energy density of matter measured by u ~ is 

Kp = 3[(�89 j + 6Li xi + ~)z _ ~ij~ik(hX i + otj)(hx~ (3.17) 
+ et k) + 2he  -~ 

Finally, the effective pressure fi = (p + r) due to the presence of bulk 
viscosity is given by 

Kfi = 2(�89 j + a j x  j + (5) - 3[(�89 j 

"t" Clj)C j "4- [3)Z __ ~ij~ik(~LX j "t- o[J)(~X k "~ OI. k) -- 4Xe -~] (3,18) 

4. ENTROPY PRODUCTION 

From equations (2.7) and (2.8) one obtains, since ds is a perfect 
differential, 

 41, 

We now consider a material medium of short mean free path and mean 
free time interacting with radiation with mean free time tin, in the quasistation- 
ary state. Then for adiabatic motions, using (2.5), one obtains from (2.7) 

(4.2) 
u t-ff-~) = t - ~ )  n [ n t - ~ n J r - p  J 
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Substituting (4.1) in (4.2), one gets 

u - -  - r + O('m  

The coefficients ~ and X take the form 

rl (o,,/1 
= 4 a  tmLg - 

4 
X = ~ aT3tm 

where a is the Stefan-Boltzmann constant. 
From (4.4) and (4.5) one obtains 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

With the equations (4.4) and (4.5) we have now a well-determined 
system with suitable initial conditions. 

5. CONCLUSION 

The positivity of the total energy density of matter gives a relation of 
constraint among the arbitrary functions k, ct, and [3 of time, such that 2h[3 
- ~ijeticd >>- O. If h = eti = 0, one obtains the usual homogeneous and 
isotropic solutions of a fluid with bulk viscosity. A particular case of the 
homogeneous and isotropic solution corresponds to the de Sitter phase when 
[~ = const. This result has been obtained by Som and Berman (1989). 

It is evident from (4.6) that the entropy production depends on the 
characteristics of viscosity and heat conduction. If the interacting medium is 
highly relativistic, then (Op/Op) --~ 1/3 and ~ --~ 0. So, even in this case, the 
entropy might arise due to heat conduction. An interesting possibility arises 
if one introduces some subsidiary conditions to remove the arbitrariness of 
h and txi such that h and ~q tend to zero for large values of time, consistent 
with the condition 213h - ~qotia j -> 0. One of the subsidiary conditions might 
be introduced in the form of the flux of heat vanishing for a large value of 
time. The universe, starting from a highly inhomogeneous and anisotropic 
phase, when the production of entropy is quite high due to heat flow and 
bulk viscosity, evolves into a homogeneous and isotropic Friedmann-type 
universe. However, note that we have considered only the first-order dissipa- 
tive process. Unless the viscosity and the heat conduction vary slowly on 
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space-time scales characterized by the mean free path and the mean free 
time, equations (2.12) and (2.13) violate causality. For a steep variation of 
these fields one must consider the second-order dissipative process in which 
the propagation equations for viscosity and heat conduction are hyperbolic 
(Anile and Choquet-Bruhat, 1989). 
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